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Recent investigations of 
mathematical problem solving 
have focused on issues that affect 
students' ability at accessing and 
making flexible use of previously 
learnt knowledge. We report here 
the first phase of a study that 
takes up this issue by examining 
potential links that might exist 
between mental models constructed 
by students, the organisational 
quality of students' prior geometric 
knowledge and the use of that 
knowledge during problem solving. 
The results suggest that the quality 
of geometric knowledge that 
students construct could have a 
powerful effect on their mental 
models and subsequent use of that 
knowledge. 

Background 
Despite the extensive research on problem 
solving, students continue to show less 
than satisfactory levels of performance in 
situations where they are required to 
apply previously learnt mathematical 
knowledge to the solution of new problems 
(Board of Senior Secondary Studies, 1994). 
This can be largely attributed to the poor 
quality of the' students' mathematical 
knowledge base (Resnick and Ford, 1981). 
It has been argued that a well-organised 
knowledge base not only facilitates access 
of appropriate information, but also 
determines how this knowledge is 
deployed in the search for a problem 
solution (Prawat,1989; Alexander & Judy, 
1988; Lawson & Chinnappan, 1994). 
Research on mathematical problem 
solving needs to give greater attention to 

the nature of the knowledge structures 
students bring to a problem situation, the 
extent to which they utilize these during 
the solution process, and the effectiveness 
with which they do so. These issues 
formed the focus of a study of students' 
geometric problem solving reported here. 

Research in the area of cognitive 
psychology and human problem solving 
(Mayer, 1975; Kintsch and Greeno, 1985, 
Halford, 1993) has generated useful 
paradigms for addressing the nature and 
role of knowledge in students' problem 
solving. In particular, the notions of 
schema and mental models serve as 
powerful constructs here. The notion of 
schema has been variously defined in the 
literature, however for our present 
purposes we adopt Rumelhart and 
Ortony's (1977) view that schemas are 
data structures for organising information 
in memory. Knowledge structures in the 
form of schemas guide both information 
acceptance, retrieval, and use. From this 
perspective, when students acquire 
mathematical concepts, principles, and 
procedures they organise these into 
schemas which provide the knowledge 
base for further mathematical activity. 
As students reflect upon and experiment 
with what they have learnt, they 
modify their mathematical schemas 
through a process of construction and 
reconstruction. It has been argued that 
the complexity and sophistication of 
these schemas have a major influence on 
problem categorisation (Sweller, 1989), 
and hence, on whether and how 
mathematical knowledge is utilised in 
the process of problem representation or 
categorisation (Glaser, 1984). A useful 
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construct for addressing students' 
application of knowledge during problem 
representation and solution is that of 
mental models. 

The term, mental models has been used 
extensively in the psychological 
literature to describe the cognitive 
representations individuals construct in 
various learning situations (e.g., English, 
forthcoming; English & Halford, 1995; 
Halford, 1993; Johnson-Laird, 1983; 
Johnson-Laird & Byrne, 1991; Rouse & 
Morris, 1986). The notion we adopt here 
is that of Halford (1993), namely, mental 
models are representations that are 
active while solving a particular 
problem and that provide the workspace 
for inference and mental operations. 
These cognitive representations are 
considered the workspace of thinking and 
understanding and must have a high 
degree of correspondence to the 
environment that they represent. The 
significance of mental models for 
mathematics learning is their relational 
structure. The mental models we try to 
help our students construct are those in 
which· the essential relations and 
principles of a mathematical domain are 
represented (English & Halford, 1995). 

We applied these constructs to an 
analysis of students' knowledge access 
and use as they solved the plane 
geometry problem of the present study. 
Our aim was to identify the geometric 
schemas students bring to a problem
solving task, the frequency with which 
these are activated, and the nature of the 
mental models students utilize and/or 
construct during the course of problem 
solution. Of particular interest was how 
these components differ between low and 
high achieving students. We 
hypothesized that the high achievers 
would show superior performance because 
they would possess more sophisticated 
geometric schemas, would activate these 
more readily, and would utilize mental 
models which comprise a structural 
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understanding of the task domain (cf. 
findings of English, forthcoming). 

Method 
Participants 
Thirty students from five year 10 
mathematics classes in a middle-class 
private suburban high school 
participated in the study. The school has 
a reputation for high academic standards 
and innovative teaching practices. 
Fifteen of the students were classified as 
high achievers and 15 as low achievers, 
based on recent class tests. 
Materials and Procedure 
The students were individually 
administered the plane geometry problem 

shown in Fig. 1. The problem was 
presented on an index card and students 
were encouraged to talk as much as 
possible as they attempted to solve it. 
Each student's response was video 
recorded. 

A AE is a tangent to 
the circle, centre C. 
AC is perpendicular 
to CE, and the 
angle nCE has a 
measure of 30 
degrees The radius 

rM.~-~ E of the circle is 
equal to 5cm. Find 
AB. 

Fig. 1: Problem presented to students 
The problem consists of three 

commonly encountered geometric forms: a 
circle, tangent, and triangles. However, 
the problem is made more complex by 
having these forms integrated in a 
manner which demands that the solver 
recognizes a component as serving more 
than one function. For example, side AE 
needs to be identified as a) a straight 
line, b) a tangent to the circle, and c) the 
hypotenuse of the right-angled triangle 
ACE. This recognition constitutes an 
important prerequisite phase before 
appropriate theorems and formulae can 



be activated and new information 
generated. 

In order to develop a checklist of 
geometric schemas that could be utilised 
in solving the above problem, we asked 
the following participants to solve it: a 
professional mathematician, two senior 
teachers of high school mathematics and 
two high school students from another 
school. On the basis of their solution 
transcripts and responses to interview 
questions, we identified a total of 17 
geometric schemas. 

Results 
One of the investigators and an 
experienced research assistant, both of 
whom had considerable experience 
teaching geometry at the high school 
level, independently examined the 
transcripts of our Year 10 students' 
solution attempts for the type and 
frequency of use of geometric schemas. 

A schema, such as 'right-angled 
triangle,' was considered to have been 
activated if a student explicitly 
mentioned it or used a trig ratio within 
that triangle. There was a high degree of 
agreement (90%) between thecodings 
produced by the investigator and the 
research assistant. A particular schema 
was considered to have been activated 
more than once if that schema was used 
on a second occasion to generate further 
new information or in the exploration of 
an alternative path to the solution. 

The results of this analysis showed 
that the high-achieving students not 
only activated a greater variety of 
geometric schemas than the low 
achievers, but they also activated more 
than four times the number of schemas of 
their peers. The tangent-radius theorem 
and perpendicularity were the most 
actively used schemas by both groups. 
The low achievers did not activate seven 
of the 17 schemas that could have been 
accessed, in contrast to the high 
achievers who activated all but thtee of 
the schemas. This suggests that the Iow 
achievers either did not possess this 

information or in fact, did possess it but 
could not see its relevance to the present 
problem. 

These findings however, do not 
provide much information regarding how 
the schemas were accessed. In particular, 
the data do not throw much light on the 
possible links between these schemas and 
the information embedded in the 
problem, and the effect such connections 
might have on schema access. To explore 
these issues, we re-examined students' 
solution attempts with a focus on their 
approaches to solution. As a basis for 
categorising these approaches, we drew 
upon the responses of the reference group 
mentioned earlier (i.e., the professional 
mathematician, senior teachers and two 
students). Their approaches to the 
problem displayed an identifiable 
solution path and were as follows: 
1. Trigonometry 

This approach involves the exclusive 
use of trigonometric ratios, that is, 
tangent, cosine and sine, during the 
solution search. One or more of these 
ratios are used in a right-angled triangle 
(s) to generate the length of AC. The 
required length of AB is then found by 
subtracting BC from AC. 
2. Equilateral/isosceles triangles 

This approach involves the 
construction of the line joining points B 
and 0, a move that helps create an 
equilateral triangle (BCD), and an 
isosceles triangle (ABO). By using a 
series of deductive reasoning processes, 
the solver is able to infer that BD has a 
length of 5em, and that AB is equal in 
length to BD. 
3 Trigonometry/Pythagoras'theorem 

This approach follows the moves 
described in the first approach except 
that, instead of using one of the trig 
ratios, Pythagoras' theorem is applied to 
triangle ADC to generate the length of 
AC. The length of BC is subsequently 
subtracted from AC to work out the length 
of AB. 
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4 Similar triangles/trigonometry 
This method incorporates 

trigonometric ratios and the Pythagoras 
rule in the solution attempt. In this 
approach the solver works out the 
lengths of one or more sides of the right
angled triangles CDE, ACD and ACE. 
The solver then recognises the similarity 
between these triangles. This move is 
used to set up an equation showing ratios 
between corresponding sides of the 
triangles. The equation is then solved to 

e . rrequeng' 0 seo u on \.pproa . Tabl 1 F fU fEachSoI ti A 

find the length of AD. The length of AC 
is then determined by the application of 
trig ratios to triangle ADC. Finally, AB 
is found by the same moves described in 
the first approach. 

Any solution attempt which did not 
have a definable path was classified as 
non-discernible. The numbers of students 
in each achievement group who 
demonstrated each approach appear in 
Table 1. 

'Y en In evemen ch b Stud ts' Each Achi tGroup 

Solution Approach Low-Achievers High-Achievers. 

Trigonometry 

Equilateral/Isosceles Triangles 

Trigonometry/Pythagoras 

Similar Triangles/Trigonometry 

Not discernable 

Total 
. 

As can be dISCerned from Table 1, rune 
of the Iow-achieving students did not use 
a definable solution approach, in contrast 
to the high achievers who all did so. It 
is not surprising then, that none of the 
low-achieving students produced the 
correct solution, whereas 11 of the high
achieving students were able to do so. 
These findings suggest that the low
achieving students adopt a problem
solving approach in which available 
geometric schemas are applied at 
random, with little focus on the problem 
goal. For example, a student might 
recognise the line AE as a tangent, and 
the line CD as a radius. On the basis of 
previous experience with the tangent and 
radius, the student generates the angle 
CDE as a right angle. Although this 
constitutes a correct move, it is of little 
assistance if that angle is not used to find 
the length of AB. In contrast, students in 
the high-achieving group make use of 
these two sets of information and an 
appropriate trig ratio to find the length 
of AC which in turn enables them to find 
the length of AB. This latter move 
involving trigonometric approach that is 
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15 15 
. . adopted by the high achievers shows 

that they are able to establish the 
required connections between significant 
components of the problem. 

The trigonometry approach was the 
most frequently used by both groups of 
students, with the high achievers 
favouring this over all other approaches. 
The trigonometry/Pythagoras, similar 
triangles / trigonometry, and 
equilateral/isosceles approaches were 
the least favoured by both groups of 
students. The dominance of· the 
trigonometry approach over all others 
suggests that the mental models students 
utilized during problem solution largely 
comprised trigonometric knowledge and 
associated information such as the 
properties of right-angled triangles. 

The identification of students' 
geometric schemas and solution 
approaches provided information about 
the connections that students appeared to 
make between features of the problem 
and their existing knowledge of 
trigonometry and geometry. In order to 
examine these connections further, we 
analysed each of the students' solution 



transcripts with a view to determining 
the extent of these connections and their 
relationship to goal attainment. This 
information would provide some insight 
into the nature of the mental models 
students constructed during the course of 
problem solution. 

We analysed the solution approaches 
adopted by a high achieving student 
(Michael) and a low achieving student 
(David) respectively. Both students 
appeared to have activated a number of 
schemas such as the tangent-radius 
theorem, perpendicularity, 
complementarity, and the properties of 
the right-angled triangle. Michael 
however, was able to infer that CB is 
equal in length to CD, that is, the radius 
of the circle also formed part of the 
length of one side of the right-angled 
triangle. He then linked this 
information to the cosine ratio to work out 
the length of the required segment, AB. 
David generated the magnitude of angle 
ACD but did not exploit this information 
in any purposeful way. He then 
attempted to use the sine ratio on triangle 
ACD, a move that did not help, and 
ultimately lead him to abandon the 
solution attempt. It is possible that 
David could have restarted his solution 
attempt, however he did not do so. 

It could be inferred that the mental 
models Michael employed during 
problem solution drew upon a greater 
range of geometric schemas than those of 
David. More importantly, these models 
generated an extended chain of actions 
which ultimately lead to the solution of 
the problem. In contrast, the models 
constructed by the low achieving student 
generated information that had the 
potential to arrive at the solution but was 
not exploited appropriately and hence, 
the goal was not achieved. 

Discussion 
In this study we have attempted to 
analyse the geometric schemas activated 
by a group of high and low achieving 
students as they worked through a 

geometry problem. The results of the 
study suggest that the problem-solving 
approaches used by the high achieving 
students involved the activation of more 
varied and complex schemas than those 
generated by the low achieving students. 
In characterising these solution 
approaches, we focused on the type and 
frequency of geometric schemas that were 
activated and used by the two groups. 

We hypothesised that during the 
solution attempt, students constructed 
mental models of the problem by 
identifying its salient features and 
aligning these with components of their 
existing knowledge (Gentner,1983). The 
quality of the mental models constructed 
by the students in the two groups differed 
significantly, however. The high 
achieving students attended to the 
structural features of the problem and 
were thus able to form meaningful, 
integrated mental representations. The 
low achievers, in contrast, tended to focus 
on the superficial aspects and hence did 
not see the connections among the 
important features of the problem. This 
difference in problem perception is a well 
documented finding of studies on 
novice/expert problem solvers (Chi, 
Glaser & Rees, 1982; Chiesi, Spilich & 
Voss, 1979; De Jong & Ferguson
Hessler,1986). Both Michael and David 
were able to identify the right-angled 
triangle ACD. However, Michael could 
notice the relevance of this triangle in 
determining the length of the segment 
AC, which he subsequently used to find 
AB. David, on the other hand, could not 
identify the link between these two 
pieces of geometric information. It could 
be argued that Michael's availability of 
a richer network of geometric schemas 
assisted in his construction of more 
sophisticated mental models that 
comprised the important structural 
elements necessary for problem solution. 
Furthermore, Michael appeared more 
active in constructing these models and 
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more purposeful in applying them during 
the solution process. 

In sum, the results of this study shows 
that the accessing of mathematical 
knowledge during problem-solving 
involves complex processing of 
information given in the problem and 
prior knowledge. It appears that the 
quality of organisation of prior geometric 
knowledge plays an important role in 
facilitating use of that knowledge, thus 
providing support for claims made by 
Prawat (1989).The data we have 
generated, however, provide only a 
partial picture about possible interaction 
between the state of organisation of 
available geometric knowledge and the 
accessing of this knowledge during 
problem solving (Alexander and Judy, 
1988). We have provided explanations 
about knowledge access and use from the 
framework of mental models. More work 
is needed in this area of mental models 
and the accessing of available knowledge 
in the domain of geometry. 

Implications for geometry 
learning and teaching 
The results of the present study have 
direct implications for the way geometry 
is taught and assessed in the classroom. 
The teaching of geometry needs to foster 
students' construction of rich and 
elaborate schemas, which will enable 
them to solve a range of novel and routine 
geometric problems. We need to provide 
students with opportunities to experiment 
with core geometrical concepts. For 
example, in addition to introducing the 
sine ratio with reference to a right-angled 
triangle, teachers should encourage 
students to change the orientation of the 
right-angled triangle and explore the use 
of the sine ratio. More opportunities 
should also be provided for students to 
identify a particular form which is 
embedded in a composite figure. We need 
to encourage students to look for novel 
connections among the concepts they meet. 
Assessment procedures should value such 
connections. 
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An effective way to foster students' 
construction of more complex geometric 
structures is through a mentoring process 
in which the teacher guides and models 
the use geometric knowledge in a variety 
of situations. Classroom practices, should 
develop these activities and challenge 
students to move to more novel areas in 
which the use of geometric knowledge 
could be explored meaningfully. This 
instructional strategy is consistent with 
Vygotsky's (1978) philosophy, namely, 
that we need to help students progress 
towards their zone of proximal 
development in the geometric domain. 
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